

Y.A.R.E
(A Maze Solving Robot)

Presented by:

Dominic Bergeron
2064116

Georges Daoud

2173098

Bruno Daoust
2029977

Erick Duchesneau

2030910

Mathieu Mallet
1976865

Martin Hurtubise

2032730

Presented to

Dr. Emil Petriu

For CEG 4392

University of Ottawa
Thursday, December 4th, 2003

CEG 4392: Final Report 2

Table of Contents

FOREWORD ...4
THEORY..5

BACKGROUND AND INTRODUCTION ..5
ADOPTED SOLUTION..6
ALGORITHMS USED ...11

Data acquisition system ...12
Data transmission system...12
Data analysis system..13

DESIGN..16
COMPONENT DESCRIPTION..16

Data acquisition system ...16
Data transmission system...19
Data analysis system..23
Miscellaneous hardware modules..25

CONTROL ALGORITHMS ..27
Artificial Intelligence Core description ...30

IMPLEMENTED SOLUTION ..31
Implementation Variations...31
Overall System Specifications ..33

IMPLEMENTATION RESULTS..34
HARDWARE SIMULATIONS AND ANALYSIS..34
WIRELESS COMMUNICATION LINK TESTS ...37
OVERALL SYSTEM TEST ..38

PROJECT ORGANIZATION ...40
SCHEDULING ...40
MEMBER PARTICIPATION ..45

CONCLUSION..47
POSSIBLE IMPROVEMENTS AND FURTHER STUDIES ...47
REFERENCES ..48

CEG 4392: Final Report 3

Table of figures

FIGURE 1 : SAMPLE GRAPH ..5
FIGURE 2: OVERALL SYSTEM SOLUTION ..6
FIGURE 3: SPECIFIC SYSTEM SOLUTION ...7
FIGURE 4: FIRST DATA PACKET PROTOTYPE..9
FIGURE 5: SECOND OUTGOING DATA PACKET PROTOTYPE..9
FIGURE 6: SECOND INCOMING DATA PACKET PROTOTYPE...10
FIGURE 7: THIRD OUTGOING DATA PACKET PROTOTYPE...10
FIGURE 8: THIRD INCOMING DATA PACKET PROTOTYPE ...11
FIGURE 9: A* ALGORITHM EXAMPLE ...14
FIGURE 10: COLLISION SENSOR HARDWARE IMPLEMENTATION ..17
FIGURE 11: INFRARED SIGNAL ...17
FIGURE 12: INFRARED SENSOR HARDWARE REPRESENTATION ..17
FIGURE 13: PULSE WIDTH MODULATION ...18
FIGURE 14: SERVO CONTROLLER HARDWARE REPRESENTATION ..19
FIGURE 15: TRANSMITTER STATE DIAGRAM..19
FIGURE 16: TRANSMITTER HARDWARE REPRESENTATION...21
FIGURE 17: SERIAL DECODER STATE DIAGRAM...21
FIGURE 18: SERIAL DECODER HARDWARE REPRESENTATION..22
FIGURE 19: RECEIVER STATE DIAGRAM...22
FIGURE 20: CLOCK DIVIDER HARDWARE REPRESENTATION..25
FIGURE 21: SEVEN SEGMENT DECODER HARDWARE REPRESENTATION ..26
FIGURE 22: DEBUGGING DECODER HARDWARE REPRESENTATION..26
FIGURE 23: AUTONOMOUS MODE STATE DIAGRAM...27
FIGURE 24: DESCISION PROCESS ..28
FIGURE 25: COMPENSATION ALGORITHM ..29
FIGURE 26: ARTIFICIAL INTELLIGENCE CORE HARDWARE REPRESENTATION..30
FIGURE 27: STATE DIAGRAM OF IMPLEMENTED AI CORE ..32
FIGURE 28: SERVO MOTOR SIMULATION ...34
FIGURE 29: RF TRANSMITTER SIMULATION ...35
FIGURE 30: SERIAL DECODER SIMULATION ...35
FIGURE 31: RF RECEIVER SIMULATION..36
FIGURE 32: TEST MAZE..38
FIGURE 33: SHORTEST PATH ..39

CEG 4392: Final Report 4

Foreword

The purpose of this document is to explain to the reader the process used to design

and implement a robot that must perform the following task:

“A mobile robot controlled by the Altera UP -2 board and/or the HC12 microprocessor

will have to traverse a maze-based map in order to get from one end to the other of the

maze. The main objective is to utilize remotely-embedded knowledge to solve the task at

hand. IR sensors should be used to locate the openings within the maze, while a wireless

communications scheme should be utilized to communicate with the knowledge base

residing on a remote PC. A lookup table may be initially used, but as the task gets more

complicated, a knowledge base should be utilized. The autonomous mobile robotic

platform will acquire and interpret the data, in accordance with the remotely-embedded

knowledge, and can update the knowledge base with newly learnt factoids. Contacts

sensors should be used for handling accidental collision situations.”[1]

Six engineers were assigned to solve this problem. These engineers are: Dominic

Bergeron, Georges Daoud, Bruno Daoust, Erick Duchesneau, Mathieu Mallet and Martin

Hurtubise. This document will explain their design and how they implemented a robot

capable of solving this task.

 The result of their efforts is Y.A.R.E. Yare, which the oxford dictionary defines

as, moving lightly and easily, is a recursive acronym that stands for YARE Automaton

for Revealing Exits. The acronym will be used in this report to designate the mobile

robot.

CEG 4392: Final Report 5

Theory

Background and Introduction

 The problem the team had to solve was theoretically vast. As it has been explored

by many researchers in the past, the task was to find the least costly option among a

choice of many. In other words, a task needed to be performed while minimizing a

certain parameter. This is a common topic in graph theory, which has a wide variety of

applications such as packet routing.

In graph theory, each point in a graph represents a certain step (for this particular

application it is a spatial location) between the starting point and the desired point. There

is a cost associated with moving between points. This is demonstrated in the following

sample graph (obtained from [3]).

Figure 1 : Sample Graph

As can be observed from the graph, the cost to travel between point A and point B would

be four. This represents the distance required to travel between the two points. The

objective of graph theory is to develop mathematical methods capable of minimizing the

cost of traveling between two designated points. Detailed discussions of such methods

can be found in referenced works by Stallings and Rensselaer [2][3].

Applying this theory to the application was difficult. The application involved

putting a mobile robot in an unknown maze environment. The robot had to find its way

out of the maze while communicating the maze’s characteristics to a base station. The

base station then analyzed the maze data and computed the optimal path that the robot

should have traveled. If the robot was put into the same maze again it would then solve

CEG 4392: Final Report 6

the maze using the optimized path. Thus, the goal was to have the robot start at the

entrance of a maze and find its exit while minimizing the distance traveled.

 The importance of solving such a problem is obvious from the numerous

examples that can be found in daily situations. For example, if it is crucial to traverse an

environment that is hazardous to humans, it may desirable to minimize exposure to this

environment. In order to do so, the shortest path through the environment would need to

be determined. Thus, Y.A.R.E. could be sent to find the shortest path, and ensure that it

is safe to use. An example of such a situation would be a mine shaft that is known to be

unstable. If it is necessary to go into the mine (to rescue trapped miners for example),

Y.A.R.E could search the tunnels for the workers instead of risking additional human

casualties. The rescuers could then use the shortest path from the entrance of the mine to

the trapped miners, found by Y.A.R.E., in order to rescue them.

Adopted Solution

 This section of the report will attempt to explain to the reader how the selected

solution resolved the problem at hand.

 The overall problem can easily be separated into two major systems: the data

acquisition system and the data analysis system. The data acquisition system was

required to obtain information about the maze. This is where the different nodes and

vertices of the graph, as well as their costs, are obtained. The calculation of the shortest

path would be performed by the data analysis system.

Figure 2: Overall System Solution

These two major systems can be broken down into several sub-systems. In this

particular case, the data acquisition system represents the mobile robot and the data

analysis system represents the base station. However, the robot and the base station do

not communicate directly. This introduces a new system: the data communication

CEG 4392: Final Report 7

system. The following figure is a graphical representation of each major system, divided

for our particular case.

Figure 3: Specific System Solution

As mentioned earlier, the primary task of the data acquisition system is to gather

information from the robot’s environment. This is accomplished through a series of

external sensors.

The first type of external sensors is used to detect accidental collisions. If the

robot comes in contact with an object these sensors are triggered and a signal is sent to

the artificial intelligence core. The core stops the robot and tells it to wait for instructions

from the base station. This procedure will be explained in greater detail in another

section of this report.

Infrared sensors are the second type of sensor that are used on the mobile robot.

These sensors are located in carefully selected areas on the front, right and left of the

robot. The sensors emit a beam of infrared light. If the light hits an obstacle, it is

reflected and the sensor detects the returning beams’ angle. From this angle, it is possible

to obtain a distance code from the sensors. After decoding, Y.A.R.E. is capable of

calculating the distance that separates it from walls and other obstacles. These sensors

CEG 4392: Final Report 8

are linked directly to the artificial intelligence core in order to allow the robot to make

decisions based on its environment.

In order to accurately obtain information about its surroundings the mobile robot

also uses a series of internal measurements. These measurements include a timer and the

speed of its DC motors. These two readings are needed to compute the distance traveled

by the mobile robot. Although the data is transmitted to the artificial intelligence core it

is not used by the robot itself, but rather by the base station’s software.

The final element of the data acquisition system is the robot’s artificial

intelligence core. This is the most complex hardware component that was designed. All

of its functionalities are described in detail in another section of the report, and to avoid

redundancy, they will not be repeated here. The reader should simply note that the

artificial intelligence core decides how the robot will respond to its environment. For

example, it is the core’s responsibility to keep the robot at an acceptable distance from

the walls.

Although Y.A.R.E. is capable of reacting to its environment using the artificial

intelligence core, it is not capable of analyzing the maze itself. To do this, it relies on the

base station’s software. In order to communicate with the base station, Y.A.R.E uses a

wireless communication link. The wireless link is, in fact, the data transmission system

shown in figure 3.

The wireless link consists of two pairs of transmitters and receivers. One set is

used to transfer maze information from the robot to the base station, and the other is used

to transfer commands from the base station to the robot. To avoid interference between

the two pairs of transmitters and receivers, they each operate on different channels. One

set uses channel two, which corresponds to 907.87 MHz, while the other set uses channel

three, which corresponds to 909.37 MHz. Both sets of transmitters/receivers use

frequency shift keying to transmit the data.

The data blocks that are transmitted and received are both of constant size.

However, incoming and outgoing data blocks (from the robot’s point of view) are

different sizes. This is because communication from the robot to the base station requires

more data to be sent, than is required for communications from the base station to the

robot.

CEG 4392: Final Report 9

By analyzing the information that had to be sent, data blocks were determined to

be 96 bit wide for robot to base transfer and 16 bit in length for base to robot transfer.

For both types of data blocks (96-bit block and 16-bit block), an 8-bit checksum is used

to validate the data.

Originally, to minimize errors during transfer, the data block was sent three times

(Data A, B and C are identical) along with the checksum of that block as suggested by

“Application Note AN-00160” (see [4] for further details). This resulted in the first

packet prototype, as shown below:

Figure 4: First Data Packet Prototype

Wireless outgoing packet (robot’s point of view) – prototype 1

Wireless incoming packet (robot’s point of view) – prototype 1

According the application note, the two start bytes FF (Hex) and 00 (Hex) are a

good choice since noise has a very low probability of manifesting itself as a series of

eight ones or zeros.

Unfortunately, upon further analysis, it was realized that if the checksum was

damaged, our data would automatically be rejected since it would not be correctly

verifiable. Our packet prototype was changed to send the checksum three times. The

second prototype is shown below:

Figure 5: Second Outgoing Data Packet Prototype

Wireless outgoing packet – prototype 2

Start

(16 bits)

Data C

(96 bits)

Chksm C

(8 bits)

Chksm B

 (8 bits)

Data B

(96 bits)

Data A

(96 bits)

Chksm A

(8 bits)

Start1

(8 bits)

Checksum

(8 bits)

Data B

(16 bits)

Data A

(16 bits)

Start2

(8 bits)

Data C

(16 bits)

Start1

(8 bits)

Checksum

(8 bits)

Data B

(96 bits)

Data A

(96 bits)

Start2

(8 bits)

Data C

(96 bits)

CEG 4392: Final Report 10

After modifying the data packets for a second time, it was realized that it was

crucial for the mobile robot to receive its commands from the base station. To minimize

the chances of getting incorrect results, the data was sent five times instead of three. The

new incoming wireless packet is shown below:

Figure 6: Second Incoming Data Packet Prototype

Wireless incoming packet – prototype 2

Since the base station’s receiver, transfers the data to the computer through the

serial port, the packet needed to be encapsulated within a serial packet (in order to ensure

compatibility with the serial port). The new packet structure is shown below:

Figure 7: Third Outgoing Data Packet Prototype

Representation of our 8-bit serial packet – prototype 3
The information bit is used to specify if the packet contains start byte or data

Wireless outgoing packet – prototype 3
Global representation of our information before encapsulation
Length: 319 bits + 3 bits of padding = 322 bits (multiple of 7)

As it can be seen in the preceding figure, our wireless outgoing packet was

encapsulated within an 8-bit serial packet. The start byte has been changed to “0000001”

(7-bit). Additionally, the most significant bit of the serial packet is used to tell if the

Info
bit

Data
bit 6

Data
bit 5

Data
bit 4

Data
bit 3

Data
bit 2

Data
bit 1

Data
bit 0

Start

(7 bits)

Data C

(96 bits)

Chksm C

(8 bits)

Chksm B

(8 bits)

Data B

(96 bits)

Data A

(96 bits)

Chksm A

(8 bits)

Chksm
E

(8 bits)

Data E

(16 bits)

Data D

(16 bits)

Chksm
D

(8 bits)

Start

(16 bits)

Data C

(16 bits)

Chksm
C

(8 bits)

Chksm
B

(8 bits)

Data A

(16 bits)

Data B

(16 bits)

Chksm
A

(8 bits)

CEG 4392: Final Report 11

packet contains a start byte (0) or actual data (1). To make our packet a multiple of 7, a

padding bit is sent after each checksum. This makes our packet 322 bits wide which

permits it to be encapsulated within 46 serial packets.

Figure 8: Third Incoming Data Packet Prototype

Wireless incoming packet – prototype 3
Representation of our packet before encapsulation
Length: 112 bits (multiple of 7)

The final version (as shown in the above figure) of the incoming packet was also

encapsulated within an 8-bit serial packet. The start byte was changed to “0000001” (7-

bit). The most significant bit of the serial packet was used to tell if the packet contains a

start byte (0) or actual data (1). To make our packet a multiple of 7, a padding bit was

sent after each checksum. Since the data block is only 16 bits wide, the checksum was

reduced to 5 bits. This makes the packet 112 bits wide encapsulated within 16 serial

packets.

The final system that was needed to solve the task was the data analysis system.

This system is implemented by the base station. The base station receives the data sent

by the robot and computes the shortest path using specially designed software. For a

complete explanation of this software’s functionality the reader is invited to consult the

user manual attached with this report.

Algorithms Used

This section of the report will discuss the various algorithms that were used to

implement our final solution. The algorithms will be divided between the three major

systems.

Chksm
E

(5 bits)

Data E

(16 bits)

Data D

(16 bits)

Chksm
D

(5 bits)

Start

(7 bits)

Data C

(16 bits)

Chksm
C

(5 bits)

Chksm
B

(5 bits)

Data B

(16 bits)

Data A

(16 bits)

Chksm
A

(5 bits)

CEG 4392: Final Report 12

Data acquisition system

The algorithms implemented in the data acquisition system affect the robot’s

behavior. Such algorithms are called control algorithms and will be discussed in a

subsequent section of this report.

 Data transmission system

The only algorithms used in the data transmission system are the majority

algorithm and checksum. The majority algorithm is computed only by the receiver while

the checksum is computed by both the transmitter and receiver.

Majority algorithm

The majority algorithm is quite simple. It examines each data block (they are

supposed to be identical) and compares each bit. If the bits compared are not identical,

the one that is repeated most often is kept, and a new data block resulting from the

majority of each data block is constructed. This process greatly reduces errors.

However, if the majority of bits are in error, the resulting data will be bad.

Data and checksum received by the base station are to be reconstructed as follows:

new_bit (A&B) | (A&C) | (B&C) where | represents a logical OR operation and &

represents a logical AND operation

Data and checksum received by the robot are to be reconstructed as follows:

new_bit (A&B&C) | (A&B&D) | (A&B&E) | (A&C&D) | (A&C&E) | (A&D&E) |

 (B&C&D) | (B&C&E) | B&D&E | (C&D&E)

Checksum

The checksum can be resumed as the sum of several groups of bits. It was chosen

to validate the data since it gives considerably good results and a low complexity

CEG 4392: Final Report 13

(compared to the CRC). Although it is not as accurate as a cyclic redundancy check, it is

sufficient for this application because the probability of a bad packet passing the

checksum is quite minute.

For our outgoing packet (from robot’s point of view), an 8-bit checksum is

computed. The 96-bit data is thus separated into chunks of 8-bits denoted as data_part(i)

and added together to give sum. The 8 least significant bits of the sum are kept and

become the checksum.

()07)(_
12

1

downtoipartDatachecksum
i









= ∑

=

For the incoming packet (from robot’s point of view), a 5-bit checksum is

computed. The 16-bit data is separated into 4 chunks of 5-bits denoted as data_part(i)

and added together to give sum. The 5 least significant bits of the sum are kept and

become the checksum. Since the chunks are created from least to most significant bits

and the data is not a multiple of 5 bits, the most significant data bit will become the least

significant bit of one of a chunk and four 0s will be added (if necessary) to that chunk.

Data analysis system

 The base station’s software contains an implementation of the A* algorithm. The

A* algorithm was developed in 1968 to combine the advantages of Djikstra’s algorithm

(it always finds an optimal path) and the advantages of the BFS algorithm (its speed). A*

takes into consideration the distance traveled, as well as an estimate the distance left to

reach the goal. This means that A* is computationally quick and it can (depending on the

implementation) guarantee a shortest path. The A* algorithm is also very flexible since

the values of G(distance traveled so far) and H(estimate of the distance) can be varied in

order to modify the behavior. Since the A* relies on F to know which square to choose

(and F = G + H), if G is set to 0 then A* becomes the BFS algorithm. If H is set to 0,

then A* turns into Djikstra’s algorithm. In other words, the effects of G (on F) can be

attenuated in order to make the algorithm faster. Or the effects of H (on F) can be

attenuated in order to make the algorithm more accurate. In addition, if H is lower than

the cost to get to the goal, the shortest path will be found. This flexibility makes the A*

algorithm very powerful.

CEG 4392: Final Report 14

In order to better explain the algorithm, an example (represented by figure 9) will

be used:

Figure 9: A* Algorithm example

In order to get from the green square to the red square (see upper left section of

Figure 9) as quickly as possible without hitting any obstacles (ie. the blue wall), the

following procedure would be used.

To implement the algorithm, two lists are required, an OpenList and a ClosedList.

First, the starting point of our map (ie. the green square) is added to the ClosedList.

Then, the adjacent squares are examined. In this case, there are 8 squares that are

reachable, as can be seen in the upper right section of Figure 9. For each square, the

starting square is set as the new square’s parent. The new square is added to the

OpenList. This can be seen in the upper right section of Figure 9, as a pointer that points

CEG 4392: Final Report 15

to the parent of that square (in this case, the starting square). Afterwards, the values of F,

G, and H are calculated for each square as described below. Also, when adding squares

that are reachable from the current square, if a certain square is already on the OpenList

it’s G value must be checked and compared to the G value that would be obtained if it

were reached from the current square. If the current square’s G value is smaller than the

original value, the current square is set as the observed square’s parent.

F = G + H
where G is the cost attributed to getting to a specific square from the beginning square,
following the path that was generated earlier.
H is the estimated cost of getting from a specific square to the final destination. It is an
estimate since we ignore obstacles.

By looking once again at the upper right section of Figure 9, it can be seen that

the values of F, G, and H have been calculated for all of the squares surrounding the

starting square. Note that a horizontal or vertical displacement has been chosen to

represent a movement of 10, while a diagonal displacement has been chosen to represent

a movement of 14 (ie. (102 + 102)0.5 is about equal to 14), since this simplifies the

calculations. Furthermore, the method used in this case, to find an estimate of the

distance left to travel, assumes that we can only perform horizontal or vertical

displacements (this is called the Manhattan method). Once all of these values have been

calculated, the square in the OpenList that has the minimum F value is removed from the

OpenList and added to the ClosedList. If two squares have the same F value, either can

be chosen as long as the selection method stays consistent.

To obtain the optimal path, the algorithm is repeated (the result after two

iterations is shown in the lower left section of figure 9) until the destination point is

added to the ClosedList. Once the destination point has been added to the ClosedList, the

optimal path is found by backtracking. The destination point’s parent is added to the path

(the destination point) and then get this point’s parent, and then the parent’s parent, and

then the parent’s parent’s parent, etc. until the starting point is added. This can be

observed in the lower right section of Figure 9, where the red dots clearly indicate the

optimal path found by backtracking. Also, the reader should notice that the square

positioned two squares below the starting square’s parent has been changed (ie. it used to

CEG 4392: Final Report 16

point to the square to the top and to the right of it). This happened because it is shorter to

get to this point from the square just above it (ie. a G value of 20 is smaller than a G

value of 28) than from the square above it and to the right.

Summary of the A* Method:

1 - Add the starting square to the closed list. This will be our current square

2 - LOOP UNTIL (the destination point is found or we can no longer find a path)

- Find all of the squares that are reachable from the current square and that are not
already on the ClosedList. Add all of them to the OpenList (while also setting the
current square as the parent). At the same time calculate the F, G, and H values.
If a point found is already on the OpenList, then check to see if it’s G value would
be smaller if it was calculated from the current square. If that is the case, the
observed square’s parent is changed (ie. the current square becomes it’s parent)
and then recalculate the F, G, and H values.
- Find, from the OpenList, the square that has the minimum F value, remove it
from the OpenList and add it to the ClosedList. This becomes the new current
square.

 END LOOP

3 - Start at the last square (ie. the destination) and backtrack by following the list of
parents in order to find the optimal path.

Design

Component Description

This section of the report will describe each of the hardware and software

components that were necessary to implement the chosen solution. The components’

functionality will also be described. The components will be separated into the three

major systems identified in the theoretical part of the report.

Data acquisition system

BumperMan

 BumperMan is a simple VHDL module created to handle bumper events on the

robot. It converts bumper hits (LOW signals) to bumper events (HIGH signals). It also

creates a third signal, middle bumper, which is active when both left and right bumpers

CEG 4392: Final Report 17

are triggered. This is the hardware representation of the BumperMan module (VHDL):

Figure 10: Collision Sensor Hardware Implementation

The complete code for this module can be found in Appendix A.

IR sensor manager

Existing code was used to control the IR sensors. The original code was taken from [5].

Instead of detailing the implementation of the module, its use will be explained. The

input Vout is connected to the IR sensor output. The output Vin is connected to the IR

sensor input. A clock of 10KHz must be fed to the module. Once started, the module will

send this modulated signal to the IR sensor:

Figure 11: Infrared Signal

Using this signal, the sensor will return one bit of data each time the input signal

returns to 0. The data will be valid for 0.2 ms, until the next bit starts. Once the 8 bits

have been received by the GP2D02 module, they will be available on the Distance signal.

The Valid signal will also be set to high to indicate that data can now be read. It should

be noted that the module will only send the input signal if the Measure signal is set to

high and if a measure is not already being taken. In order to take measures continuously,

one simply has to set the Measure pin to High. This is the hardware representation of the

IR Sensor module.

Figure 12: Infrared Sensor Hardware Representation

CEG 4392: Final Report 18

Since there are three IR sensors mounted on the robot, three of these modules have been

used.

The complete code for this module can be found in Appendix A.

Servo controls

 The servo control module is another simple VHDL module that controls the speed

of the motors by sending them a pulse-width-modulated signal. Depending on the height

of the length of the duty-cycle, the server will either move forward or backwards.

Figure 13: Pulse Width Modulation

 The previous diagram displays a sample of the PWM signal used to control the

servos. The period of the signals needs to be precisely 20ms. The duty-cycle, or high-

time, needs to be approximately 1.28 ms in order to have the motor stop. A shorter duty-

cycle, down to a minimum of 0.8ms, means that the robot will turn clockwise. A longer

duty-cycle, up to a maximum of 2.2ms, means that the robot will turn counter-clockwise.

Since the motors are mounted opposite to each other on the robot, in order to move

forward one motor turns clockwise and the other motor turns counter-clockwise.

 The Servo Control module abstracts the complexity of controlling the motors by

simply taking the speed and direction of each wheel and converting those to pulse-width-

modulated signals that are sent to the two servos. One bit per motor is used to signal the

CEG 4392: Final Report 19

desired direction of the wheel. Four bits are used to specify the desired speed of the

wheels. Though only four different speeds have been implemented in the module, a few

bits of margin were put in case more speeds were required.

 The Servo Control module is implemented using simple conditional logic and a

counter. Every clock cycle, the counter is incremented by one. When the counter is below

17800, which corresponds to 17.8ms on a 1MHz clock, a low signal is sent to the servos.

Once that limit is passed, the program checks the desired direction and speed of the

wheels. Up until the counter reaches a predefined valued, chosen to represent a specific

speed, a high signal is sent to the servos. After that value is passed, a low signal is sent to

the servos. Once the counter reaches 20000, which corresponds to a period of 20ms, the

counter is reset. All that really matters is that the speeds are matched: when the robot

goes forward at, say, the speed 'fast', both motors must turn at the 'fast' speed. This means

that the left motor will turn counter-clockwise at 'fast' speed and that the right motor will

turn clockwise at the same speed.

The hardware representation of the Servo Control module (VHDL) is:

Figure 14: Servo Controller Hardware Representation

Data transmission system

rf_tx

This module simulates the hardware implementation of the transmitter. Here is a
state diagram followed by a summary of the module’s functionality.

Figure 15: Transmitter State Diagram

CEG 4392: Final Report 20

The module takes a series of useful inputs along with two different clocks. Most

of the module operates at serial compatible bit rate (19200 kbps) but the timer process

operates faster. The output of our modules is simply data output.

The cycle begins by waiting for the CTS command to be issued. That command

is sent automatically by the transmitter hardware when the frequency synthesizer has

locked on the proper channel frequency. Once this is done, the data is compiled from the

various interesting inputs and from the internal timer. That data is compiled in a block of

96 bits.

The 8-bit checksum is then calculated for that data block. A new block denoted

as “combined data” is then compiled and includes the data block, the checksum and a

padding bit.

Next, the start byte is sent and the serialization of data begins. Seven data bits are

stored in the serial packet and the most significant bit becomes the header bit (denoted

earlier as information bit). That header bit is used to identify if the serial packet contains

a start byte or data. The stop bits are then sent (a series of 1s). If some data remains to

be sent, the serialization process restarts and this is done until all data has been sent.

CEG 4392: Final Report 21

When everything has been sent, the transmitter goes back to its initial state

(waiting for CTS).

The hardware representation of the module is shown below (VHDL symbol):
Figure 16: Transmitter Hardware Representation

The complete code for this module can be found in Appendix A.

rf_serialdecoder

This module converts each serial packet into parallel format. Here is a state

diagram followed by a summary of the module’s functionality.
Figure 17: Serial Decoder State Diagram

CEG 4392: Final Report 22

The module takes a series of two inputs. One input is a clock and the other is the

incoming serial data in form of serial packets. This module waits for an incoming signal

and converts each serial packet into parallel format. It then indicates to the RF receiver

module when a byte is ready. It also indicates if there is a framing or start bit error. The

debug_out output is used to monitor each state of the module.

The hardware representation of that module is shown below (VHDL symbol):

Figure 18: Serial Decoder Hardware Representation

The complete code for this module can be found in Appendix A.

rf_rx

This module simulates the hardware implementation of the receiver. Here is a

state diagram followed by a summary of the module’s functionality.
Figure 19: Receiver State Diagram

CEG 4392: Final Report 23

The module takes all the useful outputs from the serial decoder along with a clock

input and a data_cleared input. The output is sent directly to ai_core module and when

correctly acknowledged, the data_cleared input is set to high (set by the ai_core module).

From the incoming data, the receiver module begins by seeking for the start byte.

When the start byte is found, it will record the next 15 bytes. The majority algorithm is

then performed and the data block of 8-bit as well as the 5-bit checksum is reconstructed.

From there, the checksum is calculated on the data block and is verified to see if it

matches with the checksum sent.

If the checksum is correct, the receiver module puts data_ready to 1 and waits

until the data has been read by ai_core (data_cleared will be set to 1 when data has been

read).

After the data has been read successfully, the receiver will go back to seeking

state and await the start byte. If the checksum is incorrect, data will never be outputted

and the receiver module will go back to the seeking state.

Data analysis system

CEG 4392: Final Report 24

The implementation of the data analysis system is the base station’s software. This

software was written using the Java programming language. The following is a brief

description of each designed class. For further details, such as variables and methods

implemented by each class, the reader is encouraged to consult our full software

documentation which can be found on the enclosed CD-ROM.

AStarElem

Description: The AStarElem class acts as a container for points that are going to be
checked when we are trying to find the optimal path. An AStarElem object contains the
F, G, and H values for a specific (x,y) point on the path as well as it's parent (which is
another AStarElem). The first point that will be added to the closed list has a parent that
is null.

CommandManager

Description: Class used to queue commands to the robot, send them and ensure that they
are received.

MainGUI

Description: Main class used to display the YARE GUI and bind together the other
classes.

Map

Description: Performs maze-solving functions.

MapPoint

Description: The MapPoint Class encapsulates data that was received from the Robot. It
provides methods to access the x,y coordinates for what was seen on the left, right, and
middle IR sensor. Methods are also provided to access the Robot state, as well as the
Robot direction in radians (with respect to the right side of the map).

MathFunctions

Description: The MathFunctions Class contains all of the mathematical functions used
througout our code. All the functions are static, this means that you don't have create an
instance of MathFunctions to use these functions.

SerialDecoder

CEG 4392: Final Report 25

Description: Takes raw byte steam received over serial link and checks it's integrity.
Creates a serial packet and passes it the actual data stream.

SerialPacket

Description: Container class used to store data received over RF link.

SerialReceiver

Description: Class used to perform all communications over the serial link.

XYDecoder

Description: Processes SerialPackets in order to obtain x,y positions of the robot and its
IR sensor readings.

Miscellaneous hardware modules

Clock divider

 This module is used to create slower clocks from the 25MHz clock that powers

the Altera board. Since such code has been written countless times already, a module that

was freely available was used. However, the original code was slightly modified to

output, in addition to the already existing clocks, a clock of 19.2 kHz. This clock is used

by our RF_TX module. This is the hardware representation of the Clock Divider module

(VHDL):

Figure 20: Clock Divider Hardware Representation

The original code was taken from [5].

The complete code for this module can be found in Appendix A.

Seven segment decoder

CEG 4392: Final Report 26

Perhaps the most useful debugging module was the 7-segment decoder: This decoder

would take 8 bits of data and output them as two hexadecimal characters on two 7-

segment LEDs. This, combined with a debugging signal being outputted from many of

our modules, allowed us to quickly observe which state our robot was currently in. The

hardware representation of the 7-segment decoder, in VHDL, was:

Figure 21: Seven Segment Decoder Hardware Representation

The complete code for this module can be found in Appendix A.

RF serial decoder

This module was used to debug the RF receiver, and is still used to quickly

determine how much interference is received by the robot. This module interfaces with

the RF SerialDecoder module and counts the number of correctly received serial packets

and the number of packets containing a framing or start bit error. Those numbers are then

made available on 4 bit signals which can easily be displayed on the 7-segment LEDs.

This is the hardware representation of that test module, in VHDL:

Figure 22: Debugging Decoder Hardware Representation

Other modules have also been created, but since they were of extreme simplicity,

they will only be mentioned briefly: a 4-to-8 merger, allowing two 4 bit buses to join into

a single 8 bit bus, a 16-to-8 splitter and an 8-to-4 splitter, to easily split buses, and a

zeros-4 generator, to easily generate a bus containing nothing but zeros (useful to 'fill'

empty inputs when debugging). The code for these modules can be found in Appendix

A.

CEG 4392: Final Report 27

The reader will want to note that a key component of our implementation is

missing: the artificial intelligence core. This component is part of the data acquisition

system. This component is discussed in the following section because it directly affects

the mobile robot’s behaviour and makes decisions based on various control algorithms.

Control Algorithms

The robot has to be able to solve the maze by itself and it has to receive

commands from a base station and execute them. Since the same commands can be used

to solve the maze and to control the robot remotely, those two functionalities were

combined within the AI Core module. After executing a command, the AI Core module

goes in a Waiting for Command state. In this state, the robot takes one of two actions

depending on the mode it is in. This method was used, instead of using two separate

modules, in order to avoid repeating the same code twice. This means that less code

needs to be synthesized on the FPGA, and, eventually, smaller chips could be built to

house the hardware implementation. Smaller chips mean lower costs, both in fabrication

expenses and in power requirements.

 If the robot is in autonomous mode, meaning the robot is attempting to solve the

maze by itself, it will examine what state the robot was previously in as well as the reason

for the state change. From that information, the robot will decide what to do next. The

following diagram illustrates how the robot goes about solving the maze:

Figure 23: Autonomous Mode State Diagram

 As you can see, the robot simply follows the right wall. When exiting one of the

CEG 4392: Final Report 28

command states, the robot will go to a decision state in which it decides which state to

switch to depending on the exit conditions. When the robot is running in Slave Mode, the

next state is chosen by awaiting instructions from the base station and blindly executing

them. This diagram illustrates the decision-making processes that the robot uses:

Figure 24: Descision Process

 This technique allows the reuse of existing commands, such as 'Follow Right

Wall', for both autonomous navigation and slave navigation.

 Most commands executed by the robot are straightforward: 'Turn 90 Degrees

Clockwise' corresponds to making the left motor go forward and the right motor go

backwards for a certain amount of time; 'Find Right Wall' simply makes the robot move

forward until the right IR sensor reads a distance below an acceptable value. The only

commands which really require an explanation are the 'Follow Right Wall' and 'Follow

Left Wall' commands.

 What makes those two commands more complex is the compensation algorithm

that was included in them. When the robot is following a wall, it cannot simply be told to

CEG 4392: Final Report 29

go forward: if the wall curves slightly or if the robot starts to deviate away from the wall

(for example, if one wheel turns slightly faster than it should), the robot can lose track of

the wall. To prevent this, the following algorithm is used to keep the robot at a relatively

constant distance from the wall:

Figure 25: Compensation Algorithm

 The algorithm is simple: if the robot is too far from the wall, the speed of the right

motor is reduced in order to make the robot converge towards the wall. If the robot is too

close to the wall, the speed of the left motor is increased in order to put some distance

between the robot and the wall. The algorithm includes provisions for both slight

adjustments and large adjustments: this is because when the robot is relatively parallel to

the wall, there is little need to adjust the trajectory. Only slight adjustments are required

as the robot starts to deviate. However, when the robot is noticeably off its course, large

adjustments are made to ensure that the robot does not collide with the wall or that the

robot loses track of the wall.

 Furthermore, while the robot will exit the command state when the execution of

CEG 4392: Final Report 30

the command is completed (e.g. wall is over, or robot has finished turning), the robot will

also exit when either bumper is triggered. This is because the bumpers can only be

triggered by unexpected events and the robot will need to be instructed as to what to do

next. When the bumpers are triggered, the robot will automatically go into Slave Mode.

Artificial Intelligence Core description

This is the VHDL representation of the AI_Core module:
Figure 26: Artificial Intelligence Core Hardware Representation

 As can be seen, the AI_Core module has a lot of inputs. This is because this

module needs to receive data from all sensors in order to make intelligent decisions. The

core also controls the movements of the robot. Four outputs are used to control the speed

and direction of both motors. The current state of the robot is given as an output: this is

because that data will be sent over the wireless link by the RF_TX module. Since the

AI_Core needs to be able to receive commands, it has two input signals, Command and

RFData_Ready, as well as an output signal, RFData_Cleared, to handle received

commands. The Start and Stop signals are also interfaced to the push buttons and this

allows the user to manually toggle the robot’s mode between autonomous and slave

mode. This is useful in case of RF failure.

 A single state machine is used to operate the AI Core module. Three signals,

however, take precedence over the state machine: Start, which toggles between

autonomous and slave modes; Stop, which resets the robot; and, Reset, which is only

used when the robot is being programmed, and, of course, resets the robot.

 The implementation of the state machine is rather standard: one process executes

CEG 4392: Final Report 31

the state machine during each clock cycle, while another changes the CurrentState to

NextState every clock cycle. A third process is used to count the time. This time is used,

for example, when turning or when clearing corners. The complete code for this module

can be found in Appendix A.

Implemented solution

Implementation Variations
This section of the report will discuss how some of the components differ from

their theoretical solution.

 One component that differs from the theoretical approach is the implementation of

the A* algorithm. A modified version of the algorithm was used. Instead of dividing the

map into square regions and checking every square when trying to find the optimal path,

another approach was selected. The points that were on the robot’s path, from its first

time in the maze, were examined. Only the points that corresponded to the robot turning

or to openings in the wall were kept. This approach made it somewhat simpler to

implement the algorithm. However some generality was lost, because two points can

only connect together if the robot has passed through those points before. Furthermore,

the angles for the lines of the path were restricted (with respect to the right side of the

map). They have to be approximately a right angle or zero (ie. close to 0, 90, 180, or 270

degrees). This ensures that the optimal path only consists of lines that are nearly parallel

(or perpendicular) to a wall, since the robot either follows the right or left wall.

To create the optimal path, the path vector originally contains the set of points (a

point being defined as an x,y position in the map) that the robot discovered during its first

pass through the maze. The first element of the path vector is added to the ClosedList

(also a Vector of points). Then, all of the points that are reachable, from the current

point, are added to the OpenList (yet another Vector of points). In order to see if a point

is reachable or not, an attempt to form a line between the current point and the desired

point is made. If that line intersects a section of a wall the point is not reachable. All the

wall segments (each wall segment consists of a Vector of points) are contained in a wall

Vector (ie. the wall Vector was a Vector of Vectors), and each wall segment is checked

for possible intersections.

CEG 4392: Final Report 32

Apart from these minor differences, the implementation of the A* algorithm that

was implemented follows fairly faithfully the algorithm described in the theoretical

section of the report.

 Another component that was changed from its theoretical design was the artificial

intelligence core. The following paragraphs describe how the implemented core

functions.

To implement the AI Core functionalities, a single state machine was used. However,

while each state was generally used to execute a single command, two special states were

used to take decisions: 'Waiting for Command' and 'Waiting for RF Command'. The first

state would check if the robot is in Slave Mode and switch to Waiting for RF Command if

it was. If it was not, the robot would decide what to do in accordance to the 'Follow Right

Wall' algorithm. This diagram illustrates the actual state machine implemented in the AI

Core.

Figure 27: State Diagram of Implemented AI Core

As can be seen, there are additional commands that are only used when in Slave

Mode, such as 'Follow Left Wall'. Such commands are useless in Autonomous Mode

since the robot always follows the right wall. The robot has the ability to execute the

CEG 4392: Final Report 33

following commands:

Command Description

Follow Right Wall Robot will follow the right wall until it is over or until a
wall is detected at the front.

Clear of Corner Robot will move forward for x seconds or until a wall is
detected at the front.

Turn 90 Degrees Clockwise Robot turns clockwise for x seconds.

Find Wall at Right Robot moves forward until a wall is found at the right or
at the front.

Turn 90 Degrees Counter-
Clockwise

Robot turns counter-clockwise for x seconds.

Follow Left Wall Robot will follow left wall until it is over or until a wall
is detected at the front.

Find Wall at Left Robot moves forward until a wall is found at the left or
at the front.

Find Wall at Front Robot moves forward until a wall is found at the front.

Goto Autonomous Robot will switch from Slave Mode to Autonomous
mode. The initial state used when switching from Slave
Mode is Find Wall at Right.

Overall System Specifications

This section describes some of the systems overall properties. To gain a better

understanding of the robot’s implementation, the reader is encouraged to consult

Appendices B and C. They contain a photo of Y.A.R.E, and a diagram of the hardware

circuitry.

Power consumption

 The various components of the implemented robot were tested in order to

compute its total power consumption. The results obtained are as follows:

CEG 4392: Final Report 34

Connected to the voltage regulator, (LM78XX Series from National Semiconductor)
which is located on the development board:

Futaba FP-5148 servo motors = 265 mA * 2
Fairchild 74F244 Octal Buffer: 90 mA
Lynx Technologies HP series II Board: 30 mA
Lynx Technologies HP series II Transmitter: 17 mA
Lynx Technologies HP series II Receiver: 20 mA
Total: 687 mA

Connected to the Altera evaluation board:
Altera board: 350 mA
Sharp GP2D02 infrared sensors: 25 mA * 3
Total: 425 mA

Total load on battery: 1112 mA

Since the regulator and the Altera board can both provide up to one Ampere of
current, this implementation ensures that all the components will receive enough power to
function properly.

Implementation Results

The following section of the report contains simulations of various hardware

components. Tests of the wireless communication link and the overall system are also

provided.

Hardware Simulations and Analysis

This is a simulation of the execution of the Servo Control VHDL module:
Figure 28: Servo Motor Simulation

As can be seen from the simulation, a request for higher speed creates a pulse

CEG 4392: Final Report 35

with a duty-cycle that is longer than a request for a lower speed.

Here is a simulation of the execution of the RF Transmitter VHDL module:

Figure 29: RF Transmitter Simulation

It can be observed that the transmitter waits for the CTS signal to be set to high.

Once this condition is satisfied, the machine will compile the data from the sensors

(illustrated by CurrentState = 0010). Following this procedure, the checksum is

calculated on the data (CurrentState = 0011). The checksum and data are assembled

together in a single register (CurrentState = 0100). From this point forward, the

transmitter is transmitting. It can be clearly seen in the data_out signal the start_bit (0)

followed by the packet start bit (1) and, though it cannot be seen on this diagram, the 7

zeros that follow.

This is a simulation of the execution of the RF Serial Decoder VHDL module:

Figure 30: Serial Decoder Simulation

CEG 4392: Final Report 36

The Serial Receiver seeks a change from high to low in the incoming signal: this

marks the beginning of the start bit. From the current state it can be observed that the

module will take a reading at the middle of the start bit to ensure that no interference was

received. Since the start bit is still low, the program can start sampling the bits. From the

bitcount signal, it can be seen that the module takes eight samples at the middle of the

bits. Once 8 bits have been read, a final check is performed: the stop bit should be set to

high. If it is not, a framing error occurs. Since the stop bit is correct, it is safe to output

the received serial packet and signal, as shown by the spike in byte_ready, to indicate that

the data is ready to be read. The data is only valid for one clock cycle. This is not a

problem because the module that processes this data, RF_RX, is perfectly synchronized

with this module.

This is a simulation of the execution of the RF RX VHDL module:
Figure 31: RF Receiver Simulation

CEG 4392: Final Report 37

This simulation illustrates the reception of a start byte packet (data_in = 00000001). The

reception of the start byte changes the state of the module from 001 (seeking start byte) to

010 (receiving bytes). Fifteen bytes are sent to the RF_RX module. Those bytes

contained 1s only, with the exception of the packet start bits (0s). It can be seen from the

byte count that the module reads each data set as it is received. Once 15 bytes are

received, the module performs majority calculations on the received data, calculates the

checksum and verifies that the calculated checksum matches the received checksum. In

the simulation no coherent data was entered. As expected, the calculated checksum does

not match the (absent) checksum provided. The module will therefore not signal that it

has data ready and returns to the state 001, which corresponds to seeking start byte.

Wireless Communication Link Tests

After completing the design of the communication protocol a few tests were performed:

• Wireless communication without antennae
o Close range (0 – 0.5 meters)

 At close range, the wireless communication was working both
ways and packet integrity was higher than expected. The packet
integrity was nearly 100%.

o Mid range 0.5 – 4 meters)
 At mid range the wireless communication was working fairly well

both ways. The packet integrity was approximately 80%.
o Long range (4 - 10 meters: occasional loss of line of sight)

 At long range, there were significant packet losses and depending
on the amount of interfering objects the packet integrity would
varies considerably.

• Wireless communication with antennae on both transmitter and receiver modules

o Close range (0 – 0.5 meters)
 At close range the wireless communication was not working. The

packet integrity was nearly 0%.
o Mid range (0.5 – 4 meters)

 At mid range the wireless communication was not working well. It
appears that communication from the robot to the base station was
working, but not reliably. The packet integrity varied greatly.

o Long range (4 - 10 meters: occasional loss of line of sight)
 The wireless communication link was not reliable.

CEG 4392: Final Report 38

It is quite surprising that the wireless link performs better without antennae. The
various objects and equipment in the lab reflect the signal and deteriorate signal quality.
The problem seems to be with the transmitter. It was hypothesized that antennae should
be kept for the receiver modules only. To verify this hypothesis another test was
performed. The results are shown below:

• Wireless communication without antennae on transmitter modules and with
antennae on receiver modules

o Close range (0 – 0.5 meters)
 At close range the wireless link was working both ways and packet

integrity was higher than expected. The packet integrity was
nearly 100%.

o Mid range (0.5 – 4 meters)
 At mid range the wireless link was still working reliably in both

directions. The packet integrity was nearly 95%.
o Long range (4 - 10 meters: line of sight occasionally absent)

 At long range, the packet integrity varied depending on
interference factors. However, it was generally higher than 75%.

These results were satisfactory and enabled commands to be sent to and from the mobile

robot reliably.

Overall System Test

 This section of the report will attempt to illustrate the results that were obtained

when the robot was asked to solve a maze. Here is a diagram that shows the maze that

was chosen for this test.

Figure 32: Test Maze

What the robot is supposed to do during its first attempt to solve the maze is

simply to follow the right wall. This will result in a square path. During its second

attempt, the robot will use the shortest path which corresponds to turning left

CEG 4392: Final Report 39

immediately, and left again to the exit.

 During the test the wireless link worked flawlessly. The robot was set in

autonomous mode remotely from the base station. It followed the right wall without any

problems. The base station computed the shortest path and sent the information to the

robot through the wireless link. The robot solved the maze correctly. Here is the

resulting shortest path as computed by the base station’s software.

Figure 33: Shortest Path

This figure was modified to be printed. The reader is encouraged to run the base

station software that is included with this report in order to obtain the actual results from

the tests. The software has the ability to load the raw sensor data collected from the

robot.

On the figure, the left walls are represented in red and the left walls in cyan. The

first attempt of the robot is displayed in yellow while the optimal path, which also

corresponds to the path the robot traveled during its second attempt, is displayed in blue.

In theory, using the algorithms described in the previous sections, the robot

should be able to solve any maze. However some restrictions were found through

numerous tests.

One example of a restriction is that the width of the maze’s corridors and

openings should be the same, and should not be too small. The robot should be able to

pass easily. If the corridors are too large, the robot cannot find the wall when it clears an

opening because the walls are further than the acceptable threshold value.

Furthermore, whenever the robot needs to perform a turn in the optimal path,

there must be walls on both sides of the robot. This is a restriction due to the algorithm

that was developed to send commands to robot to solve the shortest path.

CEG 4392: Final Report 40

Finally, the walls of maze should be at 90 degrees angles since our robot is not

capable of making gradual turns.

Y.A.R.E. finds the shortest path successfully in mazes that satisfy these

conditions.

Project organization

Scheduling

In order to design and implement the project within the set deadline, time and

resource management played an important role in the success of this project. The

following section of this report will describe this component of the project.

Each member of the team, had their strengths and weaknesses evaluated. These

qualities incorporated in a list. From this list, each member was assigned tasks. These

tasks were recorded in the following table:

Responsibility Assignment Matrix (RAM)

Member

Work
Item

Erick

Martin

Mathieu

Dominic

Bruno

George

Notes

Assemble
Control Board

Prime Backup

HW
Architecture

Backup Prime Backup

SW
Architecture

Backup Backup Prime Backup

Software
Development

Limited limited yes yes yes yes

Integration
Test

Backup Backup Backup Backup Backup Prime

RF protocol Backup Backup Prime
Documentation
& Report

 Prime Backup

Here is a brief description of each item in the table. The first item, assembling the

control board, refers to the act of combining the various sensors and ensuring that they

communicate together in a coherent manner. The section on hardware architecture refers

to the design and implementation (mostly in VHDL) of the hardware code (such as the

CEG 4392: Final Report 41

servo motors, compass and IR sensors). Software architecture refers to the design and

implementation of the software application located in the base station. The integration

test is to verify if the robot solves the maze correctly. The RF protocol refers to the

design and coding of the wireless communication protocol between the base station and

the robot. The documentation is self-explanatory.

 These tasks were then broken down into smaller more manageable steps and the

time required to complete each step was estimated. Using this estimation a Gantt chart

was drawn.

Task name
Optimistic
duration

Pessimistic
duration

Most likely
duration

 (weeks) (weeks) (weeks)

design and architecture 1 2 1
write VHDL code 2 4 3
test and repair VHDL code 1 4 2
write documentation 1 3 2
become familiar with sensors/actuators 1 2 1
mount sensors/actuators on robot 1 2 1
code maze mapping software 1 4 2
learn to design/use wireless protocol 1 4 2
combine hardware and software 1 3 2
test functions / if robot performs task 1 3 2
make presentation flyers/slides 1 2 1
demonstration 0 0 0
presentation 0 0 0

Totals : 12 33 19

C
EG

 4
39

2:
 F

in
al

 R
ep

or
t

42

M
os

t L
ik

el
y

Ti
m

el
in

e

W
ee

k
1

2
3

4
5

6
7

8
9

10

11
12

13
14

15
16

17
18

19
20

A
ct

iv
ity

de
si

gn
 a

nd
 a

rc
hi

te
ct

ur
e

w

rit
e

VH
D

L
co

de

te

st
 a

nd
 re

pa
ir

VH
D

L
co

de

w

rit
e

do
cu

m
en

ta
tio

n

be
co

m
e

fa
m

ilia
r w

ith
 s

en
so

rs
/a

ct
ua

to
rs

m
ou

nt
 s

en
so

rs
/a

ct
ua

to
rs

 o
n

ro
bo

t

co
de

 m
az

e
m

ap
pi

ng
 s

of
tw

ar
e

le

ar
n

to
 d

es
ig

n/
us

e
w

ire
le

ss
 p

ro
to

co
l

co

m
bi

ne
 h

ar
dw

ar
e

an
d

so
ftw

ar
e

te

st
 fu

nc
tio

ns
 /

if
ro

bo
t p

er
fo

rm
s

ta
sk

m
ak

e
pr

es
en

ta
tio

n
fly

er
s/

sl
id

es

D

em
o

P

re
se

nt
at

io
n

Ta
sk

s t
ha

t a
re

 su
pe

r-
im

po
se

d
ca

n
be

 d
on

e
in

 p
ar

al
le

l.

CEG 4392: Final Report 43

As an added method to estimate the time required to design and implement our robot, a pert chart was
used.

Activity Earliest Earliest Latest Latest
 Duration Start Completion Start Completion Slack
 (week) (week) (week) (week) (week) (weeks)

design and architecture 1 0 1 0 1 0
write VHDL code 3 2 5 2 5 0
test and repair VHDL code 2 5 7 5 7 0
write documentation 2 1 3 8 10 7
become familiar with sensors/actuators 1 1 2 1 2 0
mount sensors/actuators on robot 1 2 3 6 7 4
code base station software 2 2 4 5 7 3
learn to design/use wireless protocol 2 2 4 5 7 3
combine hardware and software 2 7 9 7 9 0
test functions / if robot performs task 2 9 11 9 11 0
make presentation flyers/slides 1 3 4 10 11 7
Demonstration 0 11 11 11 11 0

This shows that the minimal time required for the entire project is eleven weeks. It also demonstrates

when each task must be completed in order for the project to be on schedule. If any of the tasks on the

critical path are delayed, the entire project will suffer.

CEG 4392: Final Report 44

Although multiple time estimations were computed, few of them were accurate. Many

unpredictable factors influenced the progress of the project.

Some of these factors manifested themselves in the form of implementation problems. It took

much longer than expected to implement the wireless transmitters and receivers. The main reason is that

the base station’s receiver needed to communicate with the base station itself using the serial port. The

software used to create this interface required a great degree of research. A solution to the problem was

eventually found. A particular package of the Java programming language offers some classes that

perform such functions.

In general, the software’s complexity was greatly underestimated. The reader will note that the

estimate to create the entire maze mapping software (this was the original name for the base station

software) was two weeks. In reality, over a month was required to complete this task.

Another area which was underestimated was the testing phase of the project. Many errors were

discovered while testing and the project could have benefited from a longer testing period.

In contrast, other areas of the project required fewer resources than expected. The VHDL code

was written fairly easily once its algorithms were completed. The design of the control algorithms and

the overall hardware structure took longer to design than the code itself. This was a pleasant surprise.

In order to fulfill the various needs of the project, some of the team members performed

additional tasks or were reassigned from their original tasks. The final breakdown of the tasks can be

found in the following section.

C
EG

 4
39

2:
 F

in
al

 R
ep

or
t

45

M
em

be
r P

ar
tic

ip
at

io
n

 Th
e

fo
llo

w
in

g
ta

bl
e

is
 b

as
ed

 o
n

th
e

or
ig

in
al

 li
st

 o
f t

as
ks

.
It

de
m

on
st

ra
te

s h
ow

 th
e

ta
sk

s w
er

e
ac

tu
al

ly
 d

iv
id

ed
 b

et
w

ee
n

th
e

va
rio

us
 m

em
be

rs
 o

f

th
e

en
gi

ne
er

in
g

te
am

.

M
em

be
rs

Er

ic
k

M
ar

tin

M
at

hi
eu

D

om
in

ic

B
ru

no

G
eo

rg
e

Ite
m

A
ss

em
bl

e
C

on
tr

ol

B
oa

rd

Ba
ck

up
 D

es
ig

ne
r

P
rim

ar
y

D
es

ig
ne

r

B
ac

ku
p

D
es

ig
ne

r

H

W
 A

rc
hi

te
ct

ur
e

D
es

ig
n

Ba

ck
up

D

es
ig

ne
r

Pr
im

ar
y

D
es

ig
ne

r
B

ac
ku

p
D

es
ig

ne
r

Se
rv

os
 C

od
e

D
eb

ug
ge

r

M
ai

n
Pr

og
ra

m
m

er

W

ire
le

ss
 T

x
C

od
e

D
eb

ug
ge

r

M
ai

n
Pr

og
ra

m
m

er

D
eb

ug
ge

r

W

ire
le

ss
 R

x
C

od
e

D
eb

ug
ge

r

M
ai

n
Pr

og
ra

m
m

er

D
eb

ug
ge

r

Se

ria
l D

ec
od

er
 C

od
e

D
eb

ug
ge

r

M
ai

n
Pr

og
ra

m
m

er

D
eb

ug
ge

r

IR

 s
en

so
rs

 C
od

e

D
eb

ug
ge

r
D

eb
ug

ge
r

D
eb

ug
ge

r

AI

 c
or

e
C

od
e

D
eb

ug
ge

r

M
ai

n
Pr

og
ra

m
m

er

D
eb

ug
ge

r

SW

 A
rc

hi
te

ct
ur

e
D

es
ig

n
Ba

ck
up

 D
es

ig
ne

r

Ba
ck

up
 D

es
ig

ne
r

Pr

im
ar

y
D

es
ig

ne
r

W

ire
le

ss
 T

x
C

od
e

D
eb

ug
ge

r

M
ai

n
Pr

og
ra

m
m

er

W

ire
le

ss
 R

x
C

od
e

D
eb

ug
ge

r

M
ai

n
Pr

og
ra

m
m

er

XY
 D

ec
od

er
 C

od
e

M
ai

n
Pr

og
ra

m
m

er

D

eb
ug

ge
r

Se

ria
l D

ec
od

er
 C

od
e

D
eb

ug
ge

r

M
ai

n
Pr

og
ra

m
m

er

Sh

or
te

st
 P

at
h

Al
go

rit
hm

 C
od

e
D

eb
ug

ge
r

D
eb

ug
ge

r

M

ai
n

Pr
og

ra
m

m
er

M
az

e
W

al
l f

in
de

r
C

od
e

M
ai

n
Pr

og
ra

m
m

er

D
eb

ug
ge

r

D

eb
ug

ge
r

M

az
e

Pa
th

 fi
nd

er

C
od

e
M

ai
n

Pr
og

ra
m

m
er

D

eb
ug

ge
r

D
eb

ug
ge

r

G
U

I C
od

e

M

ai
n

Pr
og

ra
m

m
er

Se
co

nd
ar

y
Pr

og
ra

m
m

er

M

az
e

D
is

pl
ay

 C
od

e

Pr

og
ra

m
m

er

Pr

og
ra

m
m

er

R
S

23
2

re
se

ar
ch

Ba

ck
up

R

es
ea

rc
he

r
Ba

ck
up

R

es
ea

rc
he

r
Ba

ck
up

 R
es

ea
rc

he
r

 B
ac

ku
p

R
es

ea
rc

he
r

M
ai

n
R

es
ea

rc
he

r

 C
EG

 4
39

2:
 F

in
al

 R
ep

or
t

46

R
F

pr
ot

oc
ol

Ba

ck
up

 D
es

ig
ne

r

Ba
ck

up
 D

es
ig

ne
r

Pr
im

ar
y

D
es

ig
ne

r

So

ftw
ar

e
D

ev
el

op
m

en
t

Ye
s

N
o

Ye
s

N
o

Ye
s

N
o

In
te

gr
at

io
n

Te
st

Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N

o
D

oc
um

en
ta

tio
n

&

R
ep

or
t

W
rit

er

P
rim

ar
y

W
rit

er

W
rit

er

W
rit

er

W
rit

er

W
rit

er

Pr
es

en
ta

tio
n

Se

co
nd

ar
y

D
es

ig
ne

r

Pr
im

ar
y

D
es

ig
ne

r

B

ui
ld

in
g

M
az

e

P
rim

ar
y

bu
ild

er

M
az

e
D

es
ig

n
D

es
ig

ne
r

D

es
ig

ne
r

CEG 4392: Final Report 47

Conclusion

Y.A.R.E. was developed by six engineers. It is capable of solving a maze using an optimal path.

The robot collects data from its sensors and sends it through a wireless communication link to a base

station. The base station’s software analyzes the data and computes the shortest path. The computed

path is transmitted to the mobile robot through the wireless link and the robot is capable of solving the

maze. This approached worked well and the task was completed successfully.

Possible Improvements and Further Studies

Even though the overall solution adopted by the project was fairly good, there are still some

improvements that could be implemented in future versions.

Currently in the maze solving algorithm, the only points that can be added to the OpenList are

the ones that were on the path that the robot traveled during its first attempt. What could be done in a

future version is to examine a broader area by splitting up the map into small regions (squares). Also,

when information is gathered from the sensors, if a wall is out of range it would be safer to assume that

this area is “unexplored” until its content is known. The algorithm works for a static environment

(where the map doesn’t change), but it might be interesting if the robot was capable of handling a

dynamic environment. For this, it would be interesting to consider making use of the D* algorithm

(Dynamic A*).

 Another possible improvement in the base station software would be to perform a verification to

see if the robot can fit in an opening. This feature was part of the original design but other features

seemed more important and it was abandoned.

 It would also be interesting to modify the robot so that it could turn corners at any angle. This

would significantly increase our robot’s ability to solve mazes.

CEG 4392: Final Report 48

References

[1] Emil Petriu, “CEG 4392 Project Assignments”
http://
www.site.uottawa.ca/%7Epetriu/CEG4392-2003-ProjectAssigned-Sep17.pdf

[2] William Stallings, Data & Computer Communications Sixth Edition, Prentice Hall, 2000, pages

342 and 343

[3] Rensselaer Polytechnic Institute, “Graph Theory: Networking”
 http://links.math.rpi.edu/devmodules/graph_networking/compat/page1.html

[4] Linx Technologies Inc., “Application Note AN-00160: Considerations for Sending Data with the

HP-II series” http://www.linxtechnologies.com/ldocs/pdfs/AN00160.pdf

[5] James O. Hamblen and Michael D. Furman, Rapid Prototyping of Digital Systems, Kluwer

Academic publication, 1999

P. Lester, “A* Pathfinding for Beginners”
http://
www.policyalmanac.org/games/aStarTutorial.htmhttp://www.policyalmanac.org/games/aStarTutorial.htm

A. J. Patel, “Amit’s A* Pages”
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

J. Macgill, “A* Demonstration”, http://www.ccg.leeds.ac.uk/james/aStar/

T. Stentz, “Real_Time Replanning in Dynamic and Unknown Environments”,
http://www.frc.ri.cmu.edu/~axs/dynamic_plan.html

IEEE Computer Society, “Style Guide version January 2003”,
http://www.computer.org/author/style/refer.htm?SMSESSION=NO

